MATHEMATICAL OPTIMIZATION MODELS USED IN ARTIFICAL INTELLIGENCE ALGORITHMS


Abstract views: 19 / PDF downloads: 5

Authors

  • bekir danış Dr

DOI:

https://doi.org/10.5281/zenodo.15714164

Keywords:

Artifical intelligence, mathematics, optimization

Abstract

In this article, mathematical optimization techniques, which are one of the basic building blocks of artificial intelligence systems, are examined in detail. The place of optimization in artificial intelligence, basic concepts, classical and modern algorithms, application areas and current developments are evaluated. In addition, the role of optimization in the learning processes of artificial intelligence models and the comparison of different optimization methods are discussed. Finally, suggestions and research perspectives for the future of optimization in the field of artificial intelligence are presented.

References

Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys, 35(3), 268-308.

Deb, K. (2001). Multi-Objective Optimization using Evolutionary Algorithms. Wiley.

Dorigo, M., & Stützle, T. (2004). Ant Colony Optimization. MIT Press.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems. MIT Press.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN'95 - International Conference on Neural Networks, 4, 1942–1948.

Koller, D., & Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques. MIT Press.

Nocedal, J., & Wright, S. J. (2006). Numerical Optimization. Springer.

Russell, S., & Norvig, P. (2021). Artificial Intelligence: A Modern Approach (4th ed.). Pearson.

Sivanandam, S. N., & Deepa, S. N. (2007). Introduction to Genetic Algorithms. Springer.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction (2nd ed.). MIT Press.

Vapnik, V. N. (1998). Statistical Learning Theory. Wiley.

Wright, S., & Nocedal, J. (1999). Numerical optimization. Springer Science, 35(67-68), 7.

Published

2025-06-20

How to Cite

danış, bekir. (2025). MATHEMATICAL OPTIMIZATION MODELS USED IN ARTIFICAL INTELLIGENCE ALGORITHMS. ARCENG (INTERNATIONAL JOURNAL OF ARCHITECTURE AND ENGINEERING) ISSN: 2822-6895, 5(1), 187–193. https://doi.org/10.5281/zenodo.15714164

Issue

Section

Articles